When.com Web Search

  1. Ads

    related to: fewest to greatest or least difference calculator with fractions

Search results

  1. Results From The WOW.Com Content Network
  2. Lowest common denominator - Wikipedia

    en.wikipedia.org/wiki/Lowest_common_denominator

    In mathematics, the lowest common denominator or least common denominator (abbreviated LCD) is the lowest common multiple of the denominators of a set of fractions. It simplifies adding, subtracting, and comparing fractions.

  3. TI-36 - Wikipedia

    en.wikipedia.org/wiki/TI-36

    In such cases, the display shows π in the numerator of the fraction, instead of as a separate coefficient. Converting °C to Kelvin within a fraction causes a display bug to appear (the K appears as a space instead) [citation needed] Conversions involving Kelvin incorrectly display °K, when it should just be K. The TI-36X Pro's Celsius to ...

  4. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    The first step is to determine a common denominator D of these fractions – preferably the least common denominator, which is the least common multiple of the Q i. This means that each Q i is a factor of D , so D = R i Q i for some expression R i that is not a fraction.

  5. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    The notion of irreducible fraction generalizes to the field of fractions of any unique factorization domain: any element of such a field can be written as a fraction in which denominator and numerator are coprime, by dividing both by their greatest common divisor. [7] This applies notably to rational expressions over a field. The irreducible ...

  6. Farey sequence - Wikipedia

    en.wikipedia.org/wiki/Farey_sequence

    In mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, [a] which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size.

  7. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5) , and the same number 21 is also the GCD of 105 and 252 − 105 = 147 .