Search results
Results From The WOW.Com Content Network
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.
In mathematics, in graph theory, the Seidel adjacency matrix of a simple undirected graph G is a symmetric matrix with a row and column for each vertex, having 0 on the diagonal, −1 for positions whose rows and columns correspond to adjacent vertices, and +1 for positions corresponding to non-adjacent vertices.
The edges of a graph define a symmetric relation on the vertices, called the adjacency relation. Specifically, two vertices x and y are adjacent if {x, y} is an edge. A graph is fully determined by its adjacency matrix A, which is an n × n square matrix, with A ij specifying the number of connections from vertex i to vertex j.
A sample DSM with 7 elements and 11 dependency marks. The design structure matrix (DSM; also referred to as dependency structure matrix, dependency structure method, dependency source matrix, problem solving matrix (PSM), incidence matrix, N 2 matrix, interaction matrix, dependency map or design precedence matrix) is a simple, compact and visual representation of a system or project in the ...
In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. The adjacency matrix of a simple undirected graph is a real symmetric matrix and is therefore ...
Neighbourhoods may be used to represent graphs in computer algorithms, via the adjacency list and adjacency matrix representations. Neighbourhoods are also used in the clustering coefficient of a graph, which is a measure of the average density of its neighbourhoods. In addition, many important classes of graphs may be defined by properties of ...
Let I denote the identity matrix and let J denote the matrix of ones, both matrices of order v. The adjacency matrix A of a strongly regular graph satisfies two equations. First: = =, which is a restatement of the regularity requirement. This shows that k is an eigenvalue of the adjacency matrix with the all-ones eigenvector.
It is also an integral graph, meaning that the eigenvalues of its adjacency matrix are integers. [3] Like the 9 × 9 {\displaystyle 9\times 9} Sudoku graph it is an integral abelian Cayley graph whose group elements all have order 3, one of a small number of possibilities for the orders in such a graph.