Ads
related to: christoffel symbol array definition math 3rd grade worksheets
Search results
Results From The WOW.Com Content Network
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. [1] The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric , allowing distances to be measured on that surface.
In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold , one can additionally arrange that the metric tensor is the Kronecker delta at the point p , and that the first ...
Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by
The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.
Both definitions are facilitated by the realisation that 1-forms (θ i, ω k j) in the flat model fit together to give a 1-form with values in the Lie algebra aff(n) of the affine group Aff(n). In these definitions, M is a smooth n-manifold and A = Aff(n)/GL(n) is an affine space of the same dimension.
The key is that when one regards X 1 ∂f / ∂u + X 2 ∂f / ∂v as a ℝ 3-valued function, its differentiation along a curve results in second partial derivatives ∂ 2 f; the Christoffel symbols enter with orthogonal projection to the tangent space, due to the formulation of the Christoffel symbols as the tangential ...