When.com Web Search

  1. Ad

    related to: aerobic respiration requires less energy

Search results

  1. Results From The WOW.Com Content Network
  2. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen. Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly.

  3. Cellular waste product - Wikipedia

    en.wikipedia.org/wiki/Cellular_waste_product

    Anaerobic respiration is correspondingly less efficient than aerobic respiration. In the absence of oxygen, not all of the carbon-carbon bonds in glucose can be broken to release energy. A great deal of extractable energy is left in the waste products. Anaerobic respiration generally occurs in prokaryotes in environments that do not contain oxygen.

  4. Exergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Exergonic_reaction

    The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]

  5. Obligate aerobe - Wikipedia

    en.wikipedia.org/wiki/Obligate_aerobe

    [1] [2] In this type of respiration, oxygen serves as the terminal electron acceptor for the electron transport chain. [1] Aerobic respiration has the advantage of yielding more energy (adenosine triphosphate or ATP) than fermentation or anaerobic respiration, [3] but obligate aerobes are subject to high levels of oxidative stress. [2]

  6. Obligate anaerobe - Wikipedia

    en.wikipedia.org/wiki/Obligate_anaerobe

    The energy yield of anaerobic respiration and fermentation (i.e. the number of ATP molecules generated) is less than in aerobic respiration. [8] This is why facultative anaerobes , which can metabolise energy both aerobically and anaerobically, preferentially metabolise energy aerobically.

  7. Aerobic organism - Wikipedia

    en.wikipedia.org/wiki/Aerobic_organism

    An aerobic organism or aerobe is an organism that can survive and grow in an oxygenated environment. [1] The ability to exhibit aerobic respiration may yield benefits to the aerobic organism, as aerobic respiration yields more energy than anaerobic respiration. [2] Energy production of the cell involves the synthesis of ATP by an enzyme called ...

  8. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    Bioenergetic systems are metabolic processes that relate to the flow of energy in living organisms. Those processes convert energy into adenosine triphosphate (ATP), which is the form suitable for muscular activity. There are two main forms of synthesis of ATP: aerobic, which uses oxygen from the bloodstream, and anaerobic, which does not.

  9. Aerotolerant anaerobe - Wikipedia

    en.wikipedia.org/wiki/Aerotolerant_anaerobe

    3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically. They gather mostly at the top because aerobic respiration generates more ATP than either fermentation or anaerobic respiration. 4: Microaerophiles need oxygen because they cannot ferment or respire anaerobically. However ...