When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 (since p = p 1). The multiplicity of a prime which does not divide n may be called 0 or may be considered undefined.

  3. 16 (number) - Wikipedia

    en.wikipedia.org/wiki/16_(number)

    The aliquot sum of 16 is 15, within an aliquot sequence of four composite members (16, 15, 9, 4, 3, 1, 0) that belong to the prime 3-aliquot tree. Sixteen is the largest known integer n, for which + is prime. It is the first Erdős–Woods number. [2] There are 16 partially ordered sets with four unlabeled elements. [3]

  4. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    While Euclid took the first step on the way to the existence of prime factorization, Kamāl al-Dīn al-Fārisī took the final step [8] and stated for the first time the fundamental theorem of arithmetic. [9] Article 16 of Gauss's Disquisitiones Arithmeticae is an early modern statement and proof employing modular arithmetic. [1]

  5. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  6. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of ...

  7. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    Thus 11 is prime, and the prime factorization is; 1386 = 2 · 3 2 · 7 · 11. Expressions ... having 16 multiplications, 4 subtractions and 3 additions, may be ...

  8. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The factorizations take the form of an optional unit multiplied by integer powers of Gaussian primes. Note that there are rational primes which are not Gaussian primes. A simple example is the rational prime 5, which is factored as 5=(2+i)(2−i) in the table, and therefore not a Gaussian prime.

  9. Smooth number - Wikipedia

    en.wikipedia.org/wiki/Smooth_number

    For example, 720 (2 4 × 3 2 × 5 1) is 5-smooth but not 5-powersmooth (because there are several prime powers greater than 5, e.g. = and =). It is 16-powersmooth since its greatest prime factor power is 2 4 = 16. The number is also 17-powersmooth, 18-powersmooth, etc.