When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Energy_(signal_processing)

    Similarly, the spectral energy density of signal x(t) is = | | where X(f) is the Fourier transform of x(t).. For example, if x(t) represents the magnitude of the electric field component (in volts per meter) of an optical signal propagating through free space, then the dimensions of X(f) would become volt·seconds per meter and () would represent the signal's spectral energy density (in volts ...

  3. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energyfrequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  4. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.

  5. Spectral density - Wikipedia

    en.wikipedia.org/wiki/Spectral_density

    To find the value of the energy spectral density ¯ at frequency , one could insert between the transmission line and the resistor a bandpass filter which passes only a narrow range of frequencies (, say) near the frequency of interest and then measure the total energy () dissipated across the resistor.

  6. Planck constant - Wikipedia

    en.wikipedia.org/wiki/Planck_constant

    The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.

  7. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    According to Planck's distribution law, the spectral energy density (energy per unit volume per unit frequency) at given temperature is given by: [4] [5] (,) = ⁡ alternatively, the law can be expressed for the spectral radiance of a body for frequency ν at absolute temperature T given as: [6] [7] [8] (,) = ⁡ where k B is the Boltzmann ...

  8. Rydberg formula - Wikipedia

    en.wikipedia.org/wiki/Rydberg_formula

    A frequency (or spectral energy) emitted in a transition from n 1 to n 2 therefore represents the photon energy emitted or absorbed when an electron makes a jump from orbital 1 to orbital 2. Later models found that the values for n 1 and n 2 corresponded to the principal quantum numbers of the two orbitals.

  9. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    Photon frequency vs. energy particle in electronvolts. The energy of a photon varies only with the frequency of the photon, related by the speed of light. This contrasts with a massive particle of which the energy depends on its velocity and rest mass. [7] [8] [9]