Search results
Results From The WOW.Com Content Network
DSatur is a graph colouring algorithm put forward by Daniel Brélaz in 1979. [1] Similarly to the greedy colouring algorithm, DSatur colours the vertices of a graph one after another, adding a previously unused colour when needed.
Chaitin's algorithm is a bottom-up, graph coloring register allocation algorithm that uses cost/degree as its spill metric. It is named after its designer, Gregory Chaitin . Chaitin's algorithm was the first register allocation algorithm that made use of coloring of the interference graph for both register allocations and spilling.
High-Performance Graph Colouring Algorithms Suite of 8 different algorithms (implemented in C++) used in the book A Guide to Graph Colouring: Algorithms and Applications (Springer International Publishers, 2015). Graph Coloring Page by Joseph Culberson (graph coloring programs) CoLoRaTiOn by Jim Andrews and Mike Fellows is a graph coloring puzzle
The Recursive Largest First (RLF) algorithm is a heuristic for the NP-hard graph coloring problem. It was originally proposed by Frank Leighton in 1979. [1] The RLF algorithm assigns colors to a graph’s vertices by constructing each color class one at a time.
In computer science and graph theory, the term color-coding refers to an algorithmic technique which is useful in the discovery of network motifs. For example, it can be used to detect a simple path of length k in a given graph. The traditional color-coding algorithm is probabilistic, but it can be derandomized without much overhead in the ...
Finding ψ(G) is an optimization problem.The decision problem for complete coloring can be phrased as: . INSTANCE: a graph G = (V, E) and positive integer k QUESTION: does there exist a partition of V into k or more disjoint sets V 1, V 2, …, V k such that each V i is an independent set for G and such that for each pair of distinct sets V i, V j, V i ∪ V j is not an independent set.
The Misra & Gries edge coloring algorithm is a polynomial time algorithm in graph theory that finds an edge coloring of any simple graph. The coloring produced uses at most + colors, where is the maximum degree of the graph. This is optimal for some graphs, and it uses at most one color more than optimal for all others. The existence of such a ...
Bodlaender & Fomin (2005) showed that, given a graph G and a number c of colors, it is possible to test whether G admits an equitable c-coloring in time O(n O(t)), where t is the treewidth of G; in particular, equitable coloring may be solved optimally in polynomial time for trees (previously known due to Chen & Lih 1994) and outerplanar graphs ...