Search results
Results From The WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In the mathematical field of graph theory, Fáry's theorem states that any simple, planar graph can be drawn without crossings so that its edges are straight line segments. That is, the ability to draw graph edges as curves instead of as straight line segments does not allow a larger class of graphs to be drawn.
Since the graph of is closed, for every point (, ′) on the "vertical line at x", with ′ (), draw an open rectangle ′ ′ disjoint from the graph of . These open rectangles, when projected to the y-axis, cover the y-axis except at f ( x ) {\displaystyle f(x)} , so add one more set V {\displaystyle V} .
If f is defined on the real numbers, it corresponds, in graphical terms, to a curve in the Euclidean plane, and each fixed-point c corresponds to an intersection of the curve with the line y = x, cf. picture. For example, if f is defined on the real numbers by = +, then 2 is a fixed point of f, because f(2) = 2.
The above procedure now is reversed to find the form of the function F(x) using its (assumed) known log–log plot. To find the function F, pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.
set-valued function with a closed graph. If F : X → 2 Y is a set-valued function between topological spaces X and Y then the following are equivalent: F has a closed graph (in X × Y); (definition) the graph of F is a closed subset of X × Y; and if Y is compact and Hausdorff then we may add to this list:
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Epigraph of a function A function (in black) is convex if and only if the region above its graph (in green) is a convex set.This region is the function's epigraph. In mathematics, the epigraph or supergraph [1] of a function: [,] valued in the extended real numbers [,] = {} is the set = {(,) : ()} consisting of all points in the Cartesian product lying on or above the function's graph. [2]