Search results
Results From The WOW.Com Content Network
The Bohr model is a relatively primitive model of the hydrogen atom, compared to the valence shell model. As a theory, it can be derived as a first-order approximation of the hydrogen atom using the broader and much more accurate quantum mechanics and thus may be considered to be an obsolete scientific theory .
The shell terminology comes from Arnold Sommerfeld's modification of the 1913 Bohr model. During this period Bohr was working with Walther Kossel, whose papers in 1914 and in 1916 called the orbits "shells". [5] [6] Sommerfeld retained Bohr's planetary model, but added mildly elliptical orbits (characterized by additional quantum numbers ℓ ...
Electron configuration was first conceived under the Bohr model of the atom, and it is still common to speak of shells and subshells despite the advances in understanding of the quantum-mechanical nature of electrons. An electron shell is the set of allowed states that share the same principal quantum number, n, that electrons
Each energy level, or electron shell, or orbit, is designated by an integer, n as shown in the figure. The Bohr model was later replaced by quantum mechanics in which the electron occupies an atomic orbital rather than an orbit, but the allowed energy levels of the hydrogen atom remained the same as in the earlier theory.
For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. For phosphorus (element 15) as an example, the concise form is [Ne] 3s 2 3p 3.
The Bohr model of the chemical bond took into account the Coulomb repulsion - the electrons in the ring are at the maximum distance from each other. [2] Thus, according to this model, the methane molecule is a regular tetrahedron, in which center the carbon nucleus locates, and in the corners - the nucleus of hydrogen. The chemical bond between ...
Calculations based on the Bohr–Sommerfeld model were able to accurately explain a number of more complex atomic spectral effects. For example, up to first-order perturbations, the Bohr model and quantum mechanics make the same predictions for the spectral line splitting in the Stark effect. At higher-order perturbations, however, the Bohr ...
Bohr calculated that a 1s orbital electron of a hydrogen atom orbiting at the Bohr radius of 0.0529 nm travels at nearly 1/137 the speed of light. [11] One can extend this to a larger element with an atomic number Z by using the expression v ≈ Z c 137 {\displaystyle v\approx {\frac {Zc}{137}}} for a 1s electron, where v is its radial velocity ...