When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Van Aubel's theorem - Wikipedia

    en.wikipedia.org/wiki/Van_Aubel's_theorem

    The Van Aubel points, the mid-points of the quadrilateral diagonals and the mid-points of the Van Aubel segments are concyclic. [3] A few extensions of the theorem, considering similar rectangles, similar rhombi and similar parallelograms constructed on the sides of the given quadrilateral, have been published on The Mathematical Gazette. [5] [6]

  3. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]

  4. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    If the incircle is tangent to the sides AB, BC, CD, DA at T 1, T 2, T 3, T 4 respectively, and if N 1, N 2, N 3, N 4 are the isotomic conjugates of these points with respect to the corresponding sides (that is, AT 1 = BN 1 and so on), then the Nagel point of the tangential quadrilateral is defined as the intersection of the lines N 1 N 3 and N ...

  5. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.

  6. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  7. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Antiparallelogram - Wikipedia

    en.wikipedia.org/wiki/Antiparallelogram

    Because of this symmetry, it has two pairs of equal angles and two pairs of equal sides. [2] The four midpoints of its sides lie on a line perpendicular to the axis of symmetry; that is, for this kind of quadrilateral, the Varignon parallelogram is a degenerate quadrilateral of area zero, consisting of four collinear points.