When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    The above lift equation neglects the skin friction forces, which are small compared to the pressure forces. By using the streamwise vector i parallel to the freestream in place of k in the integral, we obtain an expression for the pressure drag D p (which includes the pressure portion of the profile drag and, if the wing is three-dimensional ...

  3. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated.

  4. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of ′, the lift force per unit span of the wing. The definition becomes

  5. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  6. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    Lift and drag are the two components of the total aerodynamic force acting on an aerofoil or aircraft.. In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air.

  7. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    The force vector is not straightforward, as stated earlier there are two types of aerodynamic forces, lift and drag. Accordingly, there are two non-dimensional parameters. However, both variables are non-dimensionalized in a similar way. The formula for lift is given below, the formula for drag is given after:

  8. Kutta condition - Wikipedia

    en.wikipedia.org/wiki/Kutta_condition

    The airfoil is generating lift, and the magnitude of the lift is given by the Kutta–Joukowski theorem. [5]: § 4.5 One of the consequences of the Kutta condition is that the airflow over the topside of the airfoil travels much faster than the airflow under the underside.

  9. Aerodynamic center - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_center

    The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient (i.e. angle of attack), making analysis simpler. [1] = where is the aircraft lift coefficient.