When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...

  3. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    The volume of the cylinder is the cross section area, times the height, which is 2, or . Archimedes could also find the volume of the cone using the mechanical method, since, in modern terms, the integral involved is exactly the same as the one for area of the parabola. The volume of the cone is 1/3 its base area times the height.

  4. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.

  5. Spherical segment - Wikipedia

    en.wikipedia.org/wiki/Spherical_segment

    Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.

  6. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    The lateral area, L, of a circular cylinder, which need not be a right cylinder, is more generally given by =, where e is the length of an element and p is the perimeter of a right section of the cylinder. [9] This produces the previous formula for lateral area when the cylinder is a right circular cylinder.

  7. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...

  8. Volume - Wikipedia

    en.wikipedia.org/wiki/Volume

    A cone and a cylinder have radius r and height h. 2. The volume ratio is maintained when the height is scaled to h' = r √ π. 3. Decompose it into thin slices. 4. Using Cavalieri's principle, reshape each slice into a square of the same area. 5. The pyramid is replicated twice. 6. Combining them into a cube shows that the volume ratio is 1:3.

  9. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    Note that in the case of the right circular cylinder, the height and the generatrix have the same measure, so the lateral area can also be given by: L = 2 π r g {\displaystyle L=2\pi rg} . The area of the base of a cylinder is the area of a circle (in this case we define that the circle has a radius with measure r {\displaystyle r} ):