When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...

  3. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    Consecutive interior angles are the two pairs of angles that: [4] [2] have distinct vertex points, lie on the same side of the transversal and; are both interior. Two lines are parallel if and only if the two angles of any pair of consecutive interior angles of any transversal are supplementary (sum to 180°).

  4. Rectilinear polygon - Wikipedia

    en.wikipedia.org/wiki/Rectilinear_polygon

    A rectilinear polygon is a polygon all of whose sides meet at right angles. Thus the interior angle at each vertex is either 90° or 270°. Rectilinear polygons are a special case of isothetic polygons. In many cases another definition is preferable: a rectilinear polygon is a polygon with sides parallel to the axes of Cartesian coordinates ...

  5. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    In general, the measures of the interior angles of a simple convex polygon with n sides add up to (n − 2) π radians, or (n − 2)180 degrees, (n − 2)2 right angles, or (n − 2) ⁠ 1 / 2 ⁠ turn. The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles ...

  6. Exterior angle theorem - Wikipedia

    en.wikipedia.org/wiki/Exterior_angle_theorem

    In several high school treatments of geometry, the term "exterior angle theorem" has been applied to a different result, [1] namely the portion of Proposition 1.32 which states that the measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles. This result, which depends upon Euclid's parallel ...

  7. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of ...

  8. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The central angle of a square is equal to 90° (360°/4). The external angle of a square is equal to 90°. The diagonals of a square are equal and bisect each other, meeting at 90°. The diagonal of a square bisects its internal angle, forming adjacent angles of 45°. All four sides of a square are equal. Opposite sides of a square are parallel.

  9. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines. [51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary ...