Ads
related to: pythagorean theorem calculator using angle formula example problems free
Search results
Results From The WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The Bride's chair proof of the Pythagorean theorem, that is, the proof of the Pythagorean theorem based on the Bride's Chair diagram, is given below. The proof has been severely criticized by the German philosopher Arthur Schopenhauer as being unnecessarily complicated, with construction lines drawn here and there and a long line of deductive ...
Microsoft Math contains features that are designed to assist in solving mathematics, science, and tech-related problems, as well as to educate the user. The application features such tools as a graphing calculator and a unit converter. It also includes a triangle solver and an equation solver that provides step-by-step solutions to each problem.
For example, using Cartesian coordinates on the plane, the distance between two points (x 1, y 1) and (x 2, y 2) is defined by the formula = + (), which can be viewed as a version of the Pythagorean theorem. Similarly, the angle that a line makes with the horizontal can be defined by the formula = (), where m is the slope of the line.
Many results about plane figures are proved, for example, "In any triangle, two angles taken together in any manner are less than two right angles." (Book I proposition 17) and the Pythagorean theorem "In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle ...
from the formula for the tangent of the difference of angles. Using s instead of r in the above formulas will give the same primitive Pythagorean triple but with a and b swapped. Note that r and s can be reconstructed from a, b, and c using r = a / (b + c) and s = b / (a + c).
A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle.
(For a non-unit sphere, the lengths are the subtended angles times the radius, and the formula still holds if a, b and c are reinterpreted as the subtended angles). As a special case, for C = π / 2 , then cos C = 0, and one obtains the spherical analogue of the Pythagorean theorem: =