When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    The smallest odd integer with abundancy index exceeding 3 is 1018976683725 = 3 3 × 5 2 × 7 2 × 11 × 13 × 17 × 19 × 23 × 29. [8] If p = (p 1, ..., p n) is a list of primes, then p is termed abundant if some integer composed only of primes in p is abundant. A necessary and sufficient condition for this is that the product of p i /(p i − ...

  3. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Let Δ be a negative integer with Δ = −dn, where d is a multiplier and Δ is the negative discriminant of some quadratic form. Take the t first primes p 1 = 2, p 2 = 3, p 3 = 5, ..., p t, for some t ∈ N. Let f q be a random prime form of G Δ with (⁠ Δ / q ⁠) = 1. Find a generating set X of G Δ.

  4. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10 In mathematics , a divisor of an integer n , {\displaystyle n,} also called a factor of n , {\displaystyle n,} is an integer m {\displaystyle m} that may be multiplied by some integer to produce n . {\displaystyle n.} [ 1 ] In this case, one also says that n {\displaystyle n ...

  5. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Squares are always congruent to 0, 1, 4, 5, 9, 16 modulo 20. The values repeat with each increase of a by 10. In this example, N is 17 mod 20, so subtracting 17 mod 20 (or adding 3), produces 3, 4, 7, 8, 12, and 19 modulo 20 for these values. It is apparent that only the 4 from this list can be a square.

  6. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    It can be shown that 88% of all positive integers have a factor under 100 and that 92% have a factor under 1000. Thus, when confronted by an arbitrary large a , it is worthwhile to check for divisibility by the small primes, since for a = 1000 {\displaystyle a=1000} , in base-2 n = 10 {\displaystyle n=10} .

  7. 36 (number) - Wikipedia

    en.wikipedia.org/wiki/36_(number)

    The number of domino tilings of a 4×4 checkerboard is 36. [10] Since it is possible to find sequences of 36 consecutive integers such that each inner member shares a factor with either the first or the last member, 36 is an Erdős–Woods number. [11] The sum of the integers from 1 to 36 is 666 (see number of the beast). 36 is also a ...

  8. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If one of these values is 0, we have a linear factor. If the values are nonzero, we can list the possible factorizations for each. Now, 2 can only factor as 1×2, 2×1, (−1)×(−2), or (−2)×(−1). Therefore, if a second degree integer polynomial factor exists, it must take one of the values p(0) = 1, 2, −1, or −2. and likewise for p(1).

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    These factorizations work not only over the complex numbers, but also over any field, where either –1, 2 or –2 is a square. In a finite field , the product of two non-squares is a square; this implies that the polynomial x 4 + 1 , {\displaystyle x^{4}+1,} which is irreducible over the integers, is reducible modulo every prime number .