Search results
Results From The WOW.Com Content Network
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The proportionality factor is the dynamic viscosity of the fluid, often simply referred to as the viscosity. It is denoted by the Greek letter mu ( μ ). The dynamic viscosity has the dimensions ( m a s s / l e n g t h ) / t i m e {\displaystyle \mathrm {(mass/length)/time} } , therefore resulting in the SI units and the derived units :
Here dynamic viscosity is denoted by and kinematic viscosity by . The formulas given are valid only for an absolute temperature scale; therefore, unless stated otherwise temperatures are in kelvins .
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.
μ is the dynamic viscosity of the fluid (Pa·s or N·s/m 2 or kg/(m·s)) ν is the kinematic viscosity of the fluid (m 2 /s). The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface.
= is the kinematic viscosity (m 2 /s) D is the mass diffusivity (m 2 /s). μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/m·s) ρ is the density of the fluid (kg/m 3) Pe is the Peclet Number; Re is the Reynolds Number. The heat transfer analog of the Schmidt number is the Prandtl number (Pr).
In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels (same shape, different sizes) with the same boundary conditions (e.g., no-slip, center-line velocity) and the same Reynolds and Womersley numbers, then the fluid flows will be identical.