When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transcription-translation coupling - Wikipedia

    en.wikipedia.org/wiki/Transcription-translation...

    Degradation of prokaryotic mRNAs is accelerated by loss of coupled translation due to increased availability of target sites of RNase E. [6] It has also been suggested that coupling of transcription with translation is an important mechanism of preventing formation of deleterious R-loops. [7]

  3. Attenuator (genetics) - Wikipedia

    en.wikipedia.org/wiki/Attenuator_(genetics)

    There are now many equivalent examples where the translation, not transcription, is terminated by sequestering the Shine-Dalgarno sequence (ribosomal binding site) in a hairpin-loop structure. While not meeting the previous definition of (transcriptional) attenuation, these are now considered to be variants of the same phenomena [ 3 ] and are ...

  4. Bacterial translation - Wikipedia

    en.wikipedia.org/wiki/Bacterial_translation

    Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...

  5. Bacterial transcription - Wikipedia

    en.wikipedia.org/wiki/Bacterial_transcription

    Bacterial transcription differs from eukaryotic transcription in several ways. In bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm. [14]

  6. Eukaryotic translation - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_translation

    Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.

  7. Post-transcriptional modification - Wikipedia

    en.wikipedia.org/wiki/Post-transcriptional...

    Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, functional RNA molecule that can then leave the nucleus and perform any of a variety of different functions in the cell. [1]

  8. Post-transcriptional regulation - Wikipedia

    en.wikipedia.org/wiki/Post-transcriptional...

    After being produced, the stability and distribution of the different transcripts is regulated (post-transcriptional regulation) by means of RNA binding protein (RBP) that control the various steps and rates controlling events such as alternative splicing, nuclear degradation (), processing, nuclear export (three alternative pathways), sequestration in P-bodies for storage or degradation and ...

  9. Messenger RNA - Wikipedia

    en.wikipedia.org/wiki/Messenger_RNA

    Because prokaryotic mRNA does not need to be processed or transported, translation by the ribosome can begin immediately after the end of transcription. Therefore, it can be said that prokaryotic translation is coupled to transcription and occurs co-transcriptionally. [citation needed]