Search results
Results From The WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
For oxidations to the aldehydes and ketones, two equivalents of chromic acid oxidize three equivalents of the alcohol: 2 HCrO 4 − + 3 RR'C(OH)H + 8 H + + 4 H 2 O → 2 [Cr(H 2 O) 6] 3+ + 3 RR'CO. For oxidation of primary alcohols to carboxylic acids, 4 equivalents of chromic acid oxidize 3 equivalents of the alcohol. The aldehyde is an ...
The Criegee oxidation is a glycol cleavage reaction in which vicinal diols are oxidized to form ketones and aldehydes using lead tetraacetate. It is analogous to the use of periodate (Malaprade reaction) but uses a milder oxidant. This oxidation was discovered by Rudolf Criegee and coworkers and first reported in 1931 using ethylene glycol as ...
The structure of the mono anion has been determined by X-ray crystallography. In this tetrahedral oxyanion, three Cr-O bond lengths are 156 pm and the Cr-OH bond is 201 pm [5] [HCrO 4] − condenses to form dichromate: 2 [HCrO 4] − ⇌ [Cr 2 O 7] 2− + H 2 O, logK D = 2.05. Furthermore, the dichromate can be protonated: [HCr 2 O 7] − ⇌ ...
The term alcohol originally referred to the primary alcohol ethanol (ethyl alcohol), which is used as a drug and is the main alcohol present in alcoholic drinks. The suffix -ol appears in the International Union of Pure and Applied Chemistry (IUPAC) chemical name of all substances where the hydroxyl group is the functional group with the ...
The reaction is named after the German chemist, Emil Fischer, winner of the Nobel Prize in chemistry, 1902, who developed this method between 1893 and 1895. [1] [2] [3] Commonly, the reaction is performed using a solution or suspension of the carbohydrate in the alcohol as the solvent. The carbohydrate is usually completely unprotected.
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group.
This reaction is catalyzed by alcohol dehydrogenase (ADH1 in baker's yeast). [3] As shown by the reaction equation, glycolysis causes the reduction of two molecules of NAD + to NADH. Two ADP molecules are also converted to two ATP and two water molecules via substrate-level phosphorylation.