Search results
Results From The WOW.Com Content Network
In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.
These equations show that a series RC circuit has a time constant, usually denoted τ = RC being the time it takes the voltage across the component to either rise (across the capacitor) or fall (across the resistor) to within 1 / e of its final value. That is, τ is the time it takes V C to reach V(1 − 1 / e ) and V R to reach ...
In electronics, a current divider is a simple linear circuit that produces an output current (I X) that is a fraction of its input current (I T). Current division refers to the splitting of current between the branches of the divider. The currents in the various branches of such a circuit will always divide in such a way as to minimize the ...
The current through the network is equal to the sum of the currents through each component. The two preceding statements are equivalent, except for exchanging the role of voltage and current . A circuit composed solely of components connected in series is known as a series circuit ; likewise, one connected completely in parallel is known as a ...
For instance, one might transform a voltage generator into a current generator using Norton's theorem in order to be able to later combine the internal resistance of the generator with a parallel impedance load. A resistive circuit is a circuit containing only resistors, ideal current sources, and ideal voltage sources.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
We wish to find the current I through Z e. The answer is not obvious, since the terminal voltage will not be V θ after Z e is connected. Instead, we imagine that we attach, in series with impedance Z e, a source with electromotive force E equal to V θ but directed to oppose V θ, as shown in Figure 2b. No current will then flow through Z e ...