Search results
Results From The WOW.Com Content Network
However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases, faster in liquids, and fastest in solids. For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast).
The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional. [1]
The mechanical vibrations that can be interpreted as sound can travel through all forms of matter: gases, liquids, solids, and plasmas. The matter that supports the sound is called the medium. Sound cannot travel through a vacuum. [6] [7]
Second sound has been observed in solid 4 He and 3 He, [16] [17] and in some dielectric solids such as Bi in the temperature range of 1.2 to 4.0 K with a velocity of 780 ± 50 m/s, [18] or solid sodium fluoride (NaF) around 10 to 20 K. [19] In 2021 this effect was observed in a BKT superfluid [20] as well as in a germanium semiconductor [21] [22]
A sound wave propagates through a material as a localized pressure change. Increasing the pressure of a gas or fluid increases its local temperature. The local speed of sound in a compressible material increases with temperature; as a result, the wave travels faster during the high pressure phase of the oscillation than during the lower pressure phase.
An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...