When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  3. Conoid - Wikipedia

    en.wikipedia.org/wiki/Conoid

    (1) All rulings are parallel to a plane, the directrix plane. (2) All rulings intersect a fixed line, the axis. The conoid is a right conoid if its axis is perpendicular to its directrix plane. Hence all rulings are perpendicular to the axis. Because of (1) any conoid is a Catalan surface and can be represented parametrically by

  4. Ruled surface - Wikipedia

    en.wikipedia.org/wiki/Ruled_surface

    In geometry, a surface S in 3-dimensional Euclidean space is ruled (also called a scroll) if through every point of S, there is a straight line that lies on S. Examples include the plane , the lateral surface of a cylinder or cone , a conical surface with elliptical directrix , the right conoid , the helicoid , and the tangent developable of a ...

  5. Directrix - Wikipedia

    en.wikipedia.org/wiki/Directrix

    In mathematics, a directrix is a curve associated with a process generating a geometric object, such as: Directrix (conic section) Directrix (generatrix)

  6. Generatrix - Wikipedia

    en.wikipedia.org/wiki/Generatrix

    A cone can be generated by moving a line (the generatrix) fixed at the future apex of the cone along a closed curve (the directrix); if that directrix is a circle perpendicular to the line connecting its center to the apex, the motion is rotation around a fixed axis and the resulting shape is a circular cone. [3]

  7. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.

  8. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Alternatively, one can define a conic section purely in terms of plane geometry: it is the locus of all points P whose distance to a fixed point F (called the focus) is a constant multiple e (called the eccentricity) of the distance from P to a fixed line L (called the directrix). For 0 < e < 1 we obtain an ellipse, for e = 1 a parabola, and ...

  9. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    is called the circular directrix (related to focus ) of the ellipse. [ 1 ] [ 2 ] This property should not be confused with the definition of an ellipse using a directrix line below. Using Dandelin spheres , one can prove that any section of a cone with a plane is an ellipse, assuming the plane does not contain the apex and has slope less than ...