Search results
Results From The WOW.Com Content Network
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
B = diffusion coefficient of the eluting particles in the longitudinal direction, resulting in dispersion [m 2 s −1] C = Resistance to mass transfer coefficient of the analyte between mobile and stationary phase [s] u = speed [m s −1] In open tubular capillaries, the A term will be zero as the lack of packing means channeling does not occur ...
The concept of diffusion is widely used in many fields, including physics (particle diffusion), chemistry, biology, sociology, economics, statistics, data science, and finance (diffusion of people, ideas, data and price values). The central idea of diffusion, however, is common to all of these: a substance or collection undergoing diffusion ...
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
In chemical physics, atomic diffusion is a diffusion process whereby the random, thermally-activated movement of atoms in a solid results in the net transport of atoms. For example, helium atoms inside a balloon can diffuse through the wall of the balloon and escape, resulting in the balloon slowly deflating.
The upper graph shows the current density as function of the overpotential η . The anodic and cathodic current densities are shown as j a and j c, respectively for α=α a =α c =0.5 and j 0 =1mAcm −2 (close to values for platinum and palladium). The lower graph shows the logarithmic plot for different values of α (Tafel plot).
The Lineweaver–Burk plot derives from a transformation of the Michaelis–Menten equation, v = V a K m + a {\displaystyle v={\frac {Va}{K_{\mathrm {m} }+a}}} in which the rate v {\displaystyle v} is a function of the substrate concentration a {\displaystyle a} and two parameters V {\displaystyle V} , the limiting rate , and K m {\displaystyle ...