When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neutron number - Wikipedia

    en.wikipedia.org/wiki/Neutron_number

    The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z. Neutron number is not written explicitly in nuclide symbol notation, but ...

  3. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    An atomic nucleus is formed by a number of protons, Z (the atomic number), and a number of neutrons, N (the neutron number), bound together by the nuclear force. Protons and neutrons each have a mass of approximately one dalton .

  4. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutron radiation is a form of ionizing radiation that presents as free neutrons.Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation.

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay is a random process at the level of single atoms. According to quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. [2] [3] [4] However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as a half-life.

  6. Mass number - Wikipedia

    en.wikipedia.org/wiki/Mass_number

    The mass number (symbol A, from the German word: Atomgewicht, "atomic weight"), [1] also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approximately equal to the atomic (also known as isotopic) mass of the atom expressed in atomic mass units.

  7. Magic number (physics) - Wikipedia

    en.wikipedia.org/wiki/Magic_number_(physics)

    A graph of isotope stability, with some of the magic numbers. In nuclear physics, a magic number is a number of nucleons (either protons or neutrons, separately) such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a "magic" number of protons or neutrons are much more stable than other nuclei.

  8. Nuclide - Wikipedia

    en.wikipedia.org/wiki/Nuclide

    The neutron number has large effects on nuclear properties, but its effect on chemical reactions is negligible for most elements. Even in the case of the very lightest elements, where the ratio of neutron number to atomic number varies the most between isotopes, it usually has only a small effect, but it matters in some circumstances.

  9. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    A neutron in free state is an unstable particle, with a half-life around ten minutes. It undergoes β − decay (a type of radioactive decay) by turning into a proton while emitting an electron and an electron antineutrino. This reaction can occur because the mass of the neutron is slightly greater than that of the proton.