Search results
Results From The WOW.Com Content Network
The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency: T = 1/f. [2] Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals , radio waves, and light.
In the case of a periodic function F with period λ, that is, F(x + λ − vt) = F(x − vt), the periodicity of F in space means that a snapshot of the wave at a given time t finds the wave varying periodically in space with period λ (the wavelength of the wave).
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
When two signals with these waveforms, same period, and opposite phases are added together, the sum + is either identically zero, or is a sinusoidal signal with the same period and phase, whose amplitude is the difference of the original amplitudes. The phase shift of the co-sine function relative to the sine function is +90°.
where ω > 0. = (+), = +.In this simple sinusoidal example, the constant θ is also commonly referred to as phase or phase offset.φ(t) is a function of time; θ is not. In the next example, we also see that the phase offset of a real-valued sinusoid is ambiguous unless a reference (sin or cos) is specified.
In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples". A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values ...
In the International System of Units (SI), the unit of time is the second (symbol: s). It has been defined since 1967 as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom", and is an SI base unit. [12]
[2] [3] [4] It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time (ordinary frequency) or radians per unit time (angular frequency). In multidimensional systems, the wavenumber is the magnitude of the wave vector. The space of wave vectors is called reciprocal space.