Search results
Results From The WOW.Com Content Network
A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two ...
Evaluation of this symbol must yield the function for addition to make the example work as intended. Thus some dialects of Lisp allow an additional parameter for eval to specify the context of evaluation (similar to the optional arguments to Python's eval function - see below).
Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).
Lazy evaluation is difficult to combine with imperative features such as exception handling and input/output, because the order of operations becomes indeterminate. The opposite of lazy evaluation is eager evaluation, sometimes known as strict evaluation. Eager evaluation is the evaluation strategy employed in most [quantify] programming languages.
Python. The use of the triple-quotes to comment-out lines of source, does not actually form a comment. [19] The enclosed text becomes a string literal, which Python usually ignores (except when it is the first statement in the body of a module, class or function; see docstring). Elixir
In a programming language, an evaluation strategy is a set of rules for evaluating expressions. [1] The term is often used to refer to the more specific notion of a parameter-passing strategy [2] that defines the kind of value that is passed to the function for each parameter (the binding strategy) [3] and whether to evaluate the parameters of a function call, and if so in what order (the ...
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
The relationship between sensitivity and specificity, as well as the performance of the classifier, can be visualized and studied using the Receiver Operating Characteristic (ROC) curve. In theory, sensitivity and specificity are independent in the sense that it is possible to achieve 100% in both (such as in the red/blue ball example given above).