Search results
Results From The WOW.Com Content Network
Since inversion is a conformal transformation, it preserves the angles between the curves it transforms, so the original Apollonian circles also meet at right angles. Alternatively, [ 3 ] the orthogonal property of the two pencils follows from the defining property of the radical axis, that from any point X on the radical axis of a pencil P the ...
These two pencils of Apollonian circles intersect each other at right angles and form the basis of the bipolar coordinate system. Within each pencil, any two circles have the same radical axis; the two radical axes of the two pencils are perpendicular, and the centers of the circles from one pencil lie on the radical axis of the other pencil.
If the radii are equal, the radical axis is the line segment bisector of M 1, M 2. In any case the radical axis is a line perpendicular to ¯. On notations. The notation radical axis was used by the French mathematician M. Chasles as axe radical. [1] J.V. Poncelet used chorde ideale. [2]
For illustration, the orange circle in Figure 6 crosses the black given circles at right angles. Inversion in the radical circle leaves the given circles unchanged, but transforms the two conjugate pink solution circles into one another. Under the same inversion, the corresponding points of tangency of the two solution circles are transformed ...
English: The center of a dashed circle that intersects both given circles (solid black) orthogonally (that is, at right angles) must lie on the radical axis (red) of the two given circles. The tangent radii (blue) indicate that the blue point has the same power with respect to both circles, and therefore lies on the radical axis.
The radical axis of a pair of circles is defined as the set of points that have equal power h with respect to both circles. For example, for every point P on the radical axis of circles 1 and 2, the powers to each circle are equal: h 1 = h 2. Similarly, for every point on the radical axis of circles 2 and 3, the powers must be equal, h 2 = h 3.
A pencil of circles (or coaxial system) is the set of all circles in the plane with the same radical axis. [9] To be inclusive, concentric circles are said to have the line at infinity as a radical axis. There are five types of pencils of circles, [10] the two families of Apollonian circles in the illustration above represent two of them.
Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.