Search results
Results From The WOW.Com Content Network
This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [1] [2] [3] and that the particles are free.
The speed of light is the upper limit for the speeds of objects with positive rest mass, and individual photons cannot travel faster than the speed of light. [39] This is experimentally established in many tests of relativistic energy and momentum .
The expression for the four-momentum depends on how the coordinates are expressed. Time may be given in its normal units or multiplied by the speed of light so that all the components of the four-vector have dimensions of length. If the latter scaling is used, an interval of proper time, τ, defined by [54]
In special relativity, an object that has nonzero rest mass cannot travel at the speed of light. As the object approaches the speed of light, the object's energy and momentum increase without bound. In the first years after 1905, following Lorentz and Einstein, the terms longitudinal and transverse mass were still in use.
In empty space, the photon moves at c (the speed of light) and its energy and momentum are related by E = pc, where p is the magnitude of the momentum vector p. This derives from the following relativistic relation, with m = 0 : [ 27 ]
Calculating the Minkowski norm squared of the four-momentum gives a Lorentz invariant quantity equal (up to factors of the speed of light c) to the square of the particle's proper mass: = = = + | | = where = is the metric tensor of special relativity with metric signature for definiteness chosen to be (–1, 1, 1, 1).
So relativistic energy and momentum significantly increase with speed, thus the speed of light cannot be reached by massive particles. In some relativity textbooks, the so-called "relativistic mass" = is used as well. However, this concept is considered disadvantageous by many authors, instead the expressions of relativistic energy and momentum ...
The magnitude, denoted by S, divided by the speed of light is the density of the linear momentum per unit area (pressure) of the electromagnetic field. So, dimensionally, the Poynting vector is S = power / area = rate of doing work / area = ΔF / Δt Δx / area , which is the speed of light, c = Δx / Δt, times ...