Search results
Results From The WOW.Com Content Network
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
The pressure and temperature of the gas are directly proportional: As temperature increases, the pressure of the propane gas increases by the same factor. A simple consequence of this proportionality is that on a hot summer day, the propane tank pressure will be elevated, and thus propane tanks must be rated to withstand such increases in pressure.
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
Equality occurs just when the two original systems have all their respective intensive variables (temperature, pressure) equal; then the final system also has the same values. The second law is applicable to a wide variety of processes, both reversible and irreversible.
Gay-Lussac's law usually refers to Joseph-Louis Gay-Lussac's law of combining volumes of gases, discovered in 1808 and published in 1809. [1] However, it sometimes refers to the proportionality of the volume of a gas to its absolute temperature at constant pressure.
In 1968, Anderson developed (∂T/∂P) v =(αK)-1 for the thermal gradient, [7] and its reciprocal correlate the thermal pressure and temperature in a constant volume heating process by (∂P/∂T) v =αK. [8] Note, thermal pressure is the pressure change in a constant volume heating process, and expressed by integration of αK.
In thermodynamics, thermal pressure (also known as the thermal pressure coefficient) is a measure of the relative pressure change of a fluid or a solid as a response to a temperature change at constant volume. The concept is related to the Pressure-Temperature Law, also known as Amontons's law or Gay-Lussac's law. [1]
The law is a specific case of the ideal gas law. A modern statement is: Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [1] For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are ...