Search results
Results From The WOW.Com Content Network
Golden ratio base is a non-integer positional numeral system that uses the golden ratio (the irrational number + ≈ 1.61803399 symbolized by the Greek letter φ) as its base. It is sometimes referred to as base-φ, golden mean base, phi-base, or, colloquially, phinary.
A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof, [6] and also has similarities to a fourth proof by Yuri Nesterenko. [7] These later proofs again derive a contradiction from the assumption that ζ ( 3 ) {\displaystyle \zeta (3)} is rational by constructing sequences that tend to zero but are bounded below by ...
When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples ...
Bertrand's postulate and a proof; Estimation of covariance matrices; Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational
A more general proof shows that the mth root of an integer N is irrational, unless N is the mth power of an integer n. [7] That is, it is impossible to express the m th root of an integer N as the ratio a ⁄ b of two integers a and b , that share no common prime factor , except in cases in which b = 1.
For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − x − 1 = 0.
Likewise, tan 3 π / 16 , tan 7 π / 16 , tan 11 π / 16 , and tan 15 π / 16 satisfy the irreducible polynomial x 4 − 4x 3 − 6x 2 + 4x + 1 = 0, and so are conjugate algebraic integers. This is the equivalent of angles which, when measured in degrees, have rational numbers. [2] Some but not all irrational ...
It is known that ζ(3) is irrational (Apéry's theorem) and that infinitely many of the numbers ζ(2n + 1) : n ∈ , are irrational. [1] There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ (5), ζ (7), ζ (9), or ζ ...