Ads
related to: nucleic acids polymer examples and names
Search results
Results From The WOW.Com Content Network
The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). If the sugar is ribose, the polymer is RNA; if the sugar is deoxyribose, a variant of ribose, the polymer is DNA. Nucleic acids are chemical compounds that are found in nature. They carry information in cells and make up genetic material.
Although DNA and RNA do not generally occur in the same polynucleotide, the four species of nucleotides may occur in any order in the chain. The sequence of DNA or RNA species for a given polynucleotide is the main factor determining its function in a living organism or a scientific experiment.
DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life. The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides.
The convention for a nucleic acid sequence is to list the nucleotides as they occur from the 5' end to the 3' end of the polymer chain, where 5' and 3' refer to the numbering of carbons around the ribose ring which participate in forming the phosphate diester linkages of the chain. Such a sequence is called the primary structure of the biopolymer.
This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.
The nucleic acids constitute one of the four major macromolecules essential for all known forms of life. RNA is assembled as a chain of nucleotides . Cellular organisms use messenger RNA ( mRNA ) to convey genetic information (using the nitrogenous bases of guanine , uracil , adenine , and cytosine , denoted by the letters G, U, A, and C) that ...
An example of a complementary sequence to AGCT is TCGA. DNA is double-stranded containing both a sense strand and an antisense strand. Therefore, the complementary sequence will be to the sense strand. [4] Nucleic acid design can be used to create nucleic acid complexes with complicated secondary structures such as this four
Both types of pentoses in DNA and RNA are in their β-furanose (closed five-membered ring) form and they define the identity of a nucleic acid. DNA is defined by containing 2'-deoxy-ribose nucleic acid while RNA is defined by containing ribose nucleic acid. [1] In some occasions, DNA and RNA may contain some minor bases.