Search results
Results From The WOW.Com Content Network
Others, however, insist that such a usage is an abuse of terminology, and limit the Michael addition to the formation of carbon–carbon bonds through the addition of carbon nucleophiles. The terms oxa-Michael reaction and aza-Michael reaction [2] have been used to refer to the 1,4-addition of oxygen and nitrogen nucleophiles, respectively. The ...
To manufacture a polyaspartic ester, an amine is reacted with dialkyl maleate by the aza-Michael reaction. [8]Diethyl maleate is the usual maleate used. This converts the primary amines to secondary amines and also introduces bulky groups to the molecule which causes steric hindrance, slowing the reaction down.
Two common modes of Lewis acid catalysis in reactions with polar mechanisms. In reactions with polar mechanisms, Lewis acid catalysis often involves binding of the catalyst to Lewis basic heteroatoms and withdrawing electron density, which in turn facilitates heterolytic bond cleavage (in the case of Friedel-Crafts reaction) or directly activates the substrate toward nucleophilic attack (in ...
Unlike classical catalysts, these organocatalysts interact by non-covalent interactions, especially hydrogen bonding ("partial protonation"). The scope of these small-molecule H-bond donors termed (thio)urea organocatalysis covers both non-stereoselective and stereoselective reactions.
The Shi epoxidation is a chemical reaction described as the asymmetric epoxidation of alkenes with oxone (potassium peroxymonosulfate) and a fructose-derived catalyst (1). This reaction is thought to proceed via a dioxirane intermediate, generated from the catalyst ketone by oxone (potassium peroxymonosulfate). The addition of the sulfate group ...
Often cross-coupling reactions require metal catalysts. One important reaction type is this: R−M + R'−X → R−R' + MX (R, R' = organic fragments, usually aryl; M = main group center such as Li or MgX; X = halide) These reactions are used to form carbon–carbon bonds but also carbon-heteroatom bonds.
Proline organocatalysis is the use of proline as an organocatalyst in organic chemistry. This theme is often considered the starting point for the area of organocatalysis, even though early discoveries went unappreciated. [1] Modifications, such as MacMillan’s catalyst and Jorgensen's catalysts, proceed with excellent stereocontrol. [2]: 5574 [3]
In 2019, Wolf and coworkers reported the synthesis of t Bu 2 C 2 P 2 through the use of a metal catalyst. Ni(IPr)(CO) 3, upon addition of 1 equivalent of tert-butylphosphaacetylene (t BuCP), loses two carbon monoxide ligands. The addition of a second equivalent of t BuCP generates the 1,3-diphosphacyclobutadiene ligand, now binding with η 4 ...