Ad
related to: reducing equations to quadratic formula
Search results
Results From The WOW.Com Content Network
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
which can be derived by first dividing a quadratic equation by , resulting in + + = , then substituting the new coefficients into the standard quadratic formula. Because this variant allows re-use of the intermediately calculated quantity b 2 a {\displaystyle {\tfrac {b}{2a}}} , it can slightly reduce the arithmetic involved.
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f ( x ) = x 2 is a parabola whose vertex is at the origin (0, 0).
Al-Khwārizmī's method of solving linear and quadratic equations worked by first reducing the equation to one of six standard forms (where b and c are positive integers) squares equal roots (ax 2 = bx) squares equal number (ax 2 = c) roots equal number (bx = c) squares and roots equal number (ax 2 + bx = c) squares and number equal roots (ax 2 ...
A finite-dimensional vector space with a quadratic form is called a quadratic space. The map Q is a homogeneous function of degree 2, which means that it has the property that, for all a in K and v in V : Q ( a v ) = a 2 Q ( v ) . {\displaystyle Q(av)=a^{2}Q(v).}
In linear algebra, reduction refers to applying simple rules to a series of equations or matrices to change them into a simpler form. In the case of matrices, the process involves manipulating either the rows or the columns of the matrix and so is usually referred to as row-reduction or column-reduction, respectively.
To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.