When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is a n = 1.

  3. Monic polynomial - Wikipedia

    en.wikipedia.org/wiki/Monic_polynomial

    This results from the rational root theorem, which asserts that, if the rational number is a root of a polynomial with integer coefficients, then q is a divisor of the leading coefficient; so, if the polynomial is monic, then =, and the number is an integer.

  4. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    If =, then it says a rational root of a monic polynomial over integers is an integer (cf. the rational root theorem). To see the statement, let a / b {\displaystyle a/b} be a root of f {\displaystyle f} in F {\displaystyle F} and assume a , b {\displaystyle a,b} are relatively prime .

  5. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Theorem — The number of strictly positive roots (counting multiplicity) of is equal to the number of sign changes in the coefficients of , minus a nonnegative even number. If b 0 > 0 {\displaystyle b_{0}>0} , then we can divide the polynomial by x b 0 {\displaystyle x^{b_{0}}} , which would not change its number of strictly positive roots.

  6. List of polynomial topics - Wikipedia

    en.wikipedia.org/wiki/List_of_polynomial_topics

    Root (or zero) of a polynomial: Given a polynomial p(x), the x values that satisfy p(x) = 0 are called roots (or zeroes) of the polynomial p. Graphing End behaviour –

  7. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    By the rational root theorem, this has no rational zeroes. Neither does it have linear factors modulo 2 or 3. The Galois group of f(x) modulo 2 is cyclic of order 6, because f(x) modulo 2 factors into polynomials of orders 2 and 3, (x 2 + x + 1)(x 3 + x 2 + 1). f(x) modulo 3 has no linear or quadratic factor, and hence is irreducible. Thus its ...

  8. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    The complex conjugate root theorem states that if the coefficients of a polynomial are real, then the non-real roots appear in pairs of the form (a + ib, a – ib). It follows that the roots of a polynomial with real coefficients are mirror-symmetric with respect to the real axis.

  9. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    This application also invokes the integer root theorem, a stronger version of the rational root theorem for the case when () is a monic polynomial with integer coefficients; for such a polynomial, all roots are necessarily integers (which is not, as 2 is not a perfect square) or irrational.