When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vibrational spectroscopy of linear molecules - Wikipedia

    en.wikipedia.org/wiki/Vibrational_spectroscopy...

    Example of a linear molecule. N atoms in a molecule have 3N degrees of freedom which constitute translations, rotations, and vibrations.For non-linear molecules, there are 3 degrees of freedom for translational (motion along the x, y, and z directions) and 3 degrees of freedom for rotational motion (rotations in R x, R y, and R z directions) for each atom.

  3. Linear molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Linear_molecular_geometry

    Neutral AX 2 molecules with linear geometry include beryllium fluoride (F−Be−F) with two single bonds, [1] carbon dioxide (O=C=O) with two double bonds, hydrogen cyanide (H−C≡N) with one single and one triple bond. The most important linear molecule with more than three atoms is acetylene (H−C≡C−H), in which each of its carbon ...

  4. Degrees of freedom (physics and chemistry) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom_(physics...

    A diatomic molecule has one molecular vibration mode: the two atoms oscillate back and forth with the chemical bond between them acting as a spring. A molecule with N atoms has more complicated modes of molecular vibration, with 3N − 5 vibrational modes for a linear molecule and 3N − 6 modes for a nonlinear molecule. [4]

  5. Hückel method - Wikipedia

    en.wikipedia.org/wiki/Hückel_method

    The Hückel method or Hückel molecular orbital theory, proposed by Erich Hückel in 1930, is a simple method for calculating molecular orbitals as linear combinations of atomic orbitals. The theory predicts the molecular orbitals for π-electrons in π-delocalized molecules , such as ethylene , benzene , butadiene , and pyridine .

  6. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Two atomic orbitals in phase create a larger electron density, which leads to the σ orbital. If the two 1s orbitals are not in phase, a node between them causes a jump in energy, the σ* orbital. From the diagram you can deduce the bond order, how many bonds are formed between the two atoms. For this molecule it is equal to one.

  7. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    Molecular geometries can be specified in terms of 'bond lengths', 'bond angles' and 'torsional angles'. The bond length is defined to be the average distance between the nuclei of two atoms bonded together in any given molecule. A bond angle is the angle formed between three atoms across at least two bonds.

  8. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.

  9. Linear combination of atomic orbitals - Wikipedia

    en.wikipedia.org/wiki/Linear_combination_of...

    An initial assumption is that the number of molecular orbitals is equal to the number of atomic orbitals included in the linear expansion. In a sense, n atomic orbitals combine to form n molecular orbitals, which can be numbered i = 1 to n and which may not all be the same. The expression (linear expansion) for the i th molecular orbital would be: