Search results
Results From The WOW.Com Content Network
The dominant cause of soil displacement in frost heaving is the development of ice lenses. During frost heave, one or more soil-free ice lenses grow, and their growth displaces the soil above them. These lenses grow by the continual addition of water from a groundwater source that is lower in the soil and below the freezing line in the soil.
Ice lenses are bodies of ice formed when moisture, diffused within soil or rock, accumulates in a localized zone. The ice initially accumulates within small collocated pores or pre-existing crack, and, as long as the conditions remain favorable, continues to collect in the ice layer or ice lens, wedging the soil or rock apart. Ice lenses grow ...
A phase diagram of soil indicating the masses and volumes of air, solid, water, and voids. There are a variety of parameters used to describe the relative proportions of air, water and solid in a soil. This section defines these parameters and some of their interrelationships. [2] [6] The basic notation is as follows:
The frost line—also known as frost depth or freezing depth—is most commonly the depth to which the groundwater in soil is expected to freeze. The frost depth depends on the climatic conditions of an area, the heat transfer properties of the soil and adjacent materials, and on nearby heat sources.
Cryoturbation is the dominant force operating in the active layer, and tends to make it generally uniform in composition throughout. However, variation in the composition of soils due to differences in parent rock are very marked in permafrost regions due to the low rate of weathering in the very cold climate.
Soil bulk density, when determined at standardized moisture conditions, is an estimate of soil compaction. [3] Soil porosity consists of the void part of the soil volume and is occupied by gases or water. Soil consistency is the ability of soil materials to stick together. Soil temperature and colour are self-defining.
Soil structure describes the arrangement of the solid parts of the soil and of the pore spaces located between them (Marshall & Holmes, 1979). [1] Aggregation is the result of the interaction of soil particles through rearrangement, flocculation and cementation.
In hydrology, snowmelt is surface runoff produced from melting snow. It can also be used to describe the period or season during which such runoff is produced. Water produced by snowmelt is an important part of the annual water cycle in many parts of the world, in some cases contributing high fractions of the annual runoff in a watershed.