Search results
Results From The WOW.Com Content Network
The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits. The only powers of 2 with all digits distinct are 2 0 = 1 to 2 15 = 32 768 , 2 20 = 1 048 576 and 2 29 = 536 870 912 .
4.3 Negative exponents. ... (It is true that it could also be called "b to the second power", ... 3, 5 Power functions for n = 2, 4, 6.
5.2.2 Negative heights. ... 4 (2 2) 16 (2 4) 65,536 (2 16) 2. ... The proof is that the second through fourth conditions trivially imply that f is a linear function ...
The first four partial sums of the series 1 + 2 + 3 + 4 + ⋯.The parabola is their smoothed asymptote; its y-intercept is −1/12. [1]The infinite series whose terms ...
u 2 + 3v 2 = s 3. Since u 2 + 3v 2 is odd, so is s. A crucial lemma shows that if s is odd and if it satisfies an equation s 3 = u 2 + 3v 2, then it can be written in terms of two integers e and f. s = e 2 + 3f 2. so that u = e(e 2 − 9f 2) v = 3f(e 2 − f 2) u and v are coprime, so e and f must be coprime, too. Since u is even and v odd, e ...
n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
The following names are assigned to polynomials according to their degree: [2] [3] [4] Special case – zero (see § Degree of the zero polynomial, below) Degree 0 – non-zero constant [5] Degree 1 – linear; Degree 2 – quadratic; Degree 3 – cubic; Degree 4 – quartic (or, if all terms have even degree, biquadratic) Degree 5 – quintic