Search results
Results From The WOW.Com Content Network
C 2 H 3 Na O 2: Molar mass: 82.034 g·mol −1 : Appearance White deliquescent powder or crystals Odor: Vinegar (acetic acid) odor when heated to decomposition [1]: Density: 1.528 g/cm 3 (20 °C, anhydrous)
The dimension of thermal conductivity is M 1 L 1 T −3 Θ −1, expressed in terms of the dimensions mass (M), length (L), time (T), and temperature (Θ). Other units which are closely related to the thermal conductivity are in common use in the construction and textile industries.
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...
The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.
Professionals in construction, civil engineering, chemical engineering, and other technical disciplines, especially in the United States, may use English Engineering units including the pound (lb = 0.45359237 kg) as the unit of mass, the degree Fahrenheit or Rankine (°R = 5 / 9 K, about 0.555556 K) as the unit of temperature increment ...
In thermodynamic terms, this is a consequence of the fact that the internal pressure of an ideal gas vanishes. Mayer's relation allows us to deduce the value of C V from the more easily measured (and more commonly tabulated) value of C P : C V = C P − n R . {\displaystyle C_{V}=C_{P}-nR.}
In some applications where the weight of an item is very important, the product of resistivity and density is more important than absolute low resistivity – it is often possible to make the conductor thicker to make up for a higher resistivity; and then a low-resistivity-density-product material (or equivalently a high conductivity-to-density ...
Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.