Ad
related to: ex tangential quadrilateral geometry answers
Search results
Results From The WOW.Com Content Network
In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. [1] It has also been called an exscriptible quadrilateral. [2] The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The ...
Ex-tangential quadrilateral – Convex 4-sided polygon whose sidelines are all tangent to an outside circle; Harcourt's theorem – Area of a triangle from its sides and vertex distances to any line tangent to its incircle; Incenter–excenter lemma – A statement about properties of inscribed and circumscribed circles
Additionally, if a convex kite is not a rhombus, there is a circle outside the kite that is tangent to the extensions of the four sides; therefore, every convex kite that is not a rhombus is an ex-tangential quadrilateral. The convex kites that are not rhombi are exactly the quadrilaterals that are both tangential and ex-tangential. [17]
The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.
The incenter of a tangential quadrilateral lies on its Newton line (which connects the midpoints of the diagonals). [22]: Thm. 3 The ratio of two opposite sides in a tangential quadrilateral can be expressed in terms of the distances between the incenter I and the vertices according to [10]: p.15
Ex-tangential quadrilateral: the four extensions of the sides are tangent to an excircle. An equilic quadrilateral has two opposite equal sides that when extended, meet at 60°. A Watt quadrilateral is a quadrilateral with a pair of opposite sides of equal length. [6]
Help Pages in category "Types of quadrilaterals" ... Equidiagonal quadrilateral; Ex-tangential quadrilateral; G. Golden rectangle; Golden rhombus; H. Harmonic ...
The excenter of an ex-tangential quadrilateral lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors (supplementary angle bisectors) at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite ...