Search results
Results From The WOW.Com Content Network
Magnetic dipole–dipole interaction, also called dipolar coupling, refers to the direct interaction between two magnetic dipoles. Roughly speaking, the magnetic field of a dipole goes as the inverse cube of the distance, and the force of its magnetic field on another dipole goes as the first derivative of the magnetic field. It follows that ...
Electric dipole spin resonance (EDSR) is the coupling of the electron spin with an oscillating electric field. Similar to the electron spin resonance (ESR) in which electrons can be excited with an electromagnetic wave with the energy given by the Zeeman effect , in EDSR the resonance can be achieved if the frequency is related to the energy ...
In electronics, direct coupling or DC coupling (also called conductive coupling [1] and galvanic coupling) is the transfer of electrical energy by means of physical contact via a conductive medium, in contrast to inductive coupling and capacitive coupling.
Spin–orbit interaction is a relativistic coupling between the electric field produced by an ion-core and the resulting dipole moment arising from the relative motion of the electron, and its intrinsic magnetic dipole proportional to the electron spin. In an atom, the coupling weakly splits an orbital energy state into two states: one state ...
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied ...
The full form of the J-coupling interaction between spins 'I j and I k on the same molecule is: H = 2π I j · J jk · I k. where J jk is the J-coupling tensor, a real 3 × 3 matrix. It depends on molecular orientation, but in an isotropic liquid it reduces to a number, the so-called scalar coupling. In 1D NMR, the scalar coupling leads to ...
For a fully oriented molecule, the dipolar coupling for an 1 H-15 N amide group would be over 20 kHz, and a pair of protons separated by 5 Å would have up to ~1 kHz coupling. However the degree of alignment achieved by applying magnetic field is so low that the largest 1 H- 15 N or 1 H- 13 C dipolar couplings are <5 Hz. [ 19 ]
Coupling can be deliberate as part of the function of the circuit, or it may be undesirable, for instance due to coupling to stray fields. For example, energy is transferred from a power source to an electrical load by means of conductive coupling , which may be either resistive or direct coupling .