When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann–Hilbert correspondence - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hilbert...

    Suppose that X is a smooth complex algebraic variety.. Riemann–Hilbert correspondence (for regular singular connections): there is a functor Sol called the local solutions functor, that is an equivalence from the category of flat connections on algebraic vector bundles on X with regular singularities to the category of local systems of finite-dimensional complex vector spaces on X.

  3. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.

  5. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    If M is such that LCP(q, M) has a solution for every q, then M is a Q-matrix. If M is such that LCP(q, M) have a unique solution for every q, then M is a P-matrix. Both of these characterizations are sufficient and necessary. [4] The vector w is a slack variable, [5] and so is generally discarded after z is found. As such, the problem can also ...

  6. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.

  7. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    The simplest example of a vector space is the trivial one: {0}, which contains only the zero vector (see the third axiom in the Vector space article). Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F.

  8. Invariant subspace problem - Wikipedia

    en.wikipedia.org/wiki/Invariant_subspace_problem

    Every operator on a non-trivial complex finite dimensional vector space has an eigenvector, solving the invariant subspace problem for these spaces. In the field of mathematics known as functional analysis , the invariant subspace problem is a partially unresolved problem asking whether every bounded operator on a complex Banach space sends ...

  9. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    In this example, predictions for the weather on more distant days change less and less on each subsequent day and tend towards a steady state vector. [5] This vector represents the probabilities of sunny and rainy weather on all days, and is independent of the initial weather. [5] The steady state vector is defined as: