When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann–Hilbert correspondence - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hilbert...

    Suppose that X is a smooth complex algebraic variety.. Riemann–Hilbert correspondence (for regular singular connections): there is a functor Sol called the local solutions functor, that is an equivalence from the category of flat connections on algebraic vector bundles on X with regular singularities to the category of local systems of finite-dimensional complex vector spaces on X.

  3. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    For example, in the case of beam deflection problems it is wise to use a deformed shape that is analytically similar to the expected solution. A quartic may fit most of the easy problems of simply linked beams even if the order of the deformed solution may be lower.

  4. Sparse approximation - Wikipedia

    en.wikipedia.org/wiki/Sparse_approximation

    Sparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in image processing, signal processing, machine learning, medical imaging, and more.

  5. Short integer solution problem - Wikipedia

    en.wikipedia.org/wiki/Short_integer_solution_problem

    Short integer solution (SIS) and ring-SIS problems are two average-case problems that are used in lattice-based cryptography constructions. Lattice-based cryptography began in 1996 from a seminal work by Miklós Ajtai [ 1 ] who presented a family of one-way functions based on SIS problem.

  6. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.

  7. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    Figure 1: Parallelogram construction for adding vectors. This construction has the same result as moving F 2 so its tail coincides with the head of F 1, and taking the net force as the vector joining the tail of F 1 to the head of F 2. This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth.

  8. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details

  9. Resultant - Wikipedia

    en.wikipedia.org/wiki/Resultant

    Macaulay's resultant is a polynomial in the coefficients of these n homogeneous polynomials that vanishes if and only if the polynomials have a common non-zero solution in an algebraically closed field containing the coefficients, or, equivalently, if the n hyper surfaces defined by the polynomials have a common zero in the n –1 dimensional ...