Ad
related to: applied fluid mechanics solutions
Search results
Results From The WOW.Com Content Network
The solution of the equations is a flow velocity.It is a vector field—to every point in a fluid, at any moment in a time interval, it gives a vector whose direction and magnitude are those of the velocity of the fluid at that point in space and at that moment in time.
Flubber, also commonly known as slime, is a non-Newtonian fluid, easily made from polyvinyl alcohol–based glues (such as white "school" glue) and borax. It flows under low stresses but breaks under higher stresses and pressures. This combination of fluid-like and solid-like properties makes it a Maxwell fluid.
The analytical solution of this equation is impossible hence scientists resort to laboratory experiments in such situations. The answers delivered are, however, usually qualitatively different since dynamical and geometric similitude are difficult to enforce simultaneously between the lab experiment and the prototype .
In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...
Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid ( liquids and gases ) with surfaces ...
In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity. [1] The Euler equations can be applied to incompressible and ...
To good approximation, the flow velocity oscillations are irrotational outside the boundary layer, and potential flow theory can be applied to the oscillatory part of the motion. This significantly simplifies the solution of these flow problems, and is often applied in the irrotational flow regions of sound waves and water waves .
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.