Search results
Results From The WOW.Com Content Network
An example of a concave polygon. A simple polygon that is not convex is called concave, [1] non-convex [2] or reentrant. [3] A concave polygon will always have at least one reflex interior angle—that is, an angle with a measure that is between 180 degrees and 360 degrees exclusive. [4]
The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave ...
In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap . A twice- differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain . [ 1 ]
A concave mirror with light rays Center of curvature. In geometry, the center of curvature of a curve is a point located at a distance from the curve equal to the radius of curvature lying on the curve normal vector. It is the point at infinity if the curvature is zero. The osculating circle to the curve is centered at the centre of curvature.
A: The bottom of a concave meniscus. B: The top of a convex meniscus. In physics (particularly fluid statics), the meniscus (pl.: menisci, from Greek 'crescent') is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.
Computer rendering of Euler's Disk on a slightly concave base. Euler's Disk, invented between 1987 and 1990 by Joseph Bendik, [1] is a trademarked scientific educational toy. [2] It is used to illustrate and study the dynamic system of a spinning and rolling disk on a flat or curved surface. It has been the subject of several scientific papers. [3]
Concave or concavity may refer to: Science and technology. Concave lens; Concave mirror; Mathematics. Concave function, the negative of a convex function;
Convex and concave kites. A kite is a quadrilateral with reflection symmetry across one of its diagonals. Equivalently, it is a quadrilateral whose four sides can be grouped into two pairs of adjacent equal-length sides. [1] [7] A kite can be constructed from the centers and crossing points of any two intersecting circles. [8]