When.com Web Search

  1. Ad

    related to: magnetic field around a solenoid diagram worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Solenoid - Wikipedia

    en.wikipedia.org/wiki/Solenoid

    The magnetic field inside an infinitely long solenoid is homogeneous and its strength neither depends on the distance from the axis nor on the solenoid's cross-sectional area. This is a derivation of the magnetic flux density around a solenoid that is long enough so that

  3. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The magnetic fields of distant astronomical objects are measured through their effects on local charged particles. For instance, electrons spiraling around a field line produce synchrotron radiation that is detectable in radio waves. The finest precision for a magnetic field measurement was attained by Gravity Probe B at 5 aT (5 × 10 −18 T ...

  4. Solenoid (engineering) - Wikipedia

    en.wikipedia.org/wiki/Solenoid_(engineering)

    The device creates a magnetic field [1] from electric current, and uses the magnetic field to create linear motion. [2] [3] [4] In electromagnetic technology, a solenoid is an actuator assembly with a sliding ferromagnetic plunger inside the coil. Without power, the plunger extends for part of its length outside the coil; applying power pulls ...

  5. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it. Faraday's law of induction makes use of the magnetic flux Φ B through a region of space enclosed by a wire loop.

  6. Magnetic dipole - Wikipedia

    en.wikipedia.org/wiki/Magnetic_dipole

    The magnetic field of a current loop. The ring represents the current loop, which goes into the page at the x and comes out at the dot. In classical physics, the magnetic field of a dipole is calculated as the limit of either a current loop or a pair of charges as the source shrinks to a point while keeping the magnetic moment m constant.

  7. Fleming's left-hand rule for motors - Wikipedia

    en.wikipedia.org/wiki/Fleming's_left-hand_rule...

    Fleming's left-hand rule. Fleming's left-hand rule for electric motors is one of a pair of visual mnemonics, the other being Fleming's right-hand rule for generators. [1] [2] [3] They were originated by John Ambrose Fleming, in the late 19th century, as a simple way of working out the direction of motion in an electric motor, or the direction of electric current in an electric generator.

  8. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    The Maxwell–Faraday equation (listed as one of Maxwell's equations) describes the fact that a spatially varying (and also possibly time-varying, depending on how a magnetic field varies in time) electric field always accompanies a time-varying magnetic field, while Faraday's law states that emf (electromagnetic work done on a unit charge when ...

  9. Superconducting magnetic energy storage - Wikipedia

    en.wikipedia.org/wiki/Superconducting_magnetic...

    An increase in peak magnetic field yields a reduction in both volume (higher energy density) and cost (reduced conductor length). Smaller volume means higher energy density and cost is reduced due to the decrease of the conductor length. There is an optimum value of the peak magnetic field, about 7 T in this case. If the field is increased past ...