When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    The classic proof that the square root of 2 is irrational is a refutation by contradiction. [11] Indeed, we set out to prove the negation ¬ ∃ a, b ∈ N {\displaystyle \mathbb {N} } . a/b = √ 2 by assuming that there exist natural numbers a and b whose ratio is the square root of two, and derive a contradiction.

  3. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    In proof by contradiction, also known by the Latin phrase reductio ad absurdum (by reduction to the absurd), it is shown that if some statement is assumed true, a logical contradiction occurs, hence the statement must be false. A famous example involves the proof that is an irrational number:

  5. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  6. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    Tom M. Apostol made another geometric reductio ad absurdum argument showing that is irrational. [16] It is also an example of proof by infinite descent. It makes use of classic compass and straightedge construction, proving the theorem by a method similar to that employed by ancient Greek geometers. It is essentially the same algebraic proof as ...

  7. Reductio ad absurdum - Wikipedia

    en.wikipedia.org/wiki/Reductio_ad_absurdum

    Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical arguments, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.

  8. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    However, indirect methods such as proof by contradiction can also be used with contraposition, as, for example, in the proof of the irrationality of the square root of 2. By the definition of a rational number, the statement can be made that "If is rational, then it can be expressed as an irreducible fraction".

  9. Hippasus - Wikipedia

    en.wikipedia.org/wiki/Hippasus

    The discovery of irrational numbers is said to have been shocking to the Pythagoreans, ... The method is a proof by contradiction, or reductio ad absurdum, ...