Search results
Results From The WOW.Com Content Network
Gas separation can refer to any of a number of techniques used to separate gases, either to give multiple products or to purify a single product. Swing adsorption techniques [ edit ]
Gas separation across a membrane is a pressure-driven process, where the driving force is the difference in pressure between inlet of raw material and outlet of product. The membrane used in the process is a generally non-porous layer, so there will not be a severe leakage of gas through the membrane.
A nitrogen generator Bottle of 4Å molecular sieves. Pressure swing adsorption provides separation of oxygen or nitrogen from air without liquefaction. The process operates around ambient temperature; a zeolite (molecular sponge) is exposed to high pressure air, then the air is released and an adsorbed film of the desired gas is released.
VPSA systems apply pressurized gas to the separation process and also apply a vacuum to the purge gas. VPSA systems, like one of the portable oxygen concentrators, are among the most efficient systems measured on customary industry indices, such as recovery (product gas out/product gas in) and productivity (product gas out/mass of sieve material).
Dense membranes are utilized for gas separations (removal of CO 2 from natural gas, separating N 2 from air, organic vapor removal from air or a nitrogen stream) and sometimes in membrane distillation. The later process helps in the separation of azeotropic compositions reducing the costs of distillation processes. Ranges of membrane based ...
A separation process is a method that converts a mixture or a solution of chemical substances into two or more distinct product mixtures, [1] a scientific process of separating two or more substances in order to obtain purity. At least one product mixture from the separation is enriched in one or more of the source mixture's constituents.
The basis of gas media separation with the use of membrane systems is the difference in velocity with which various gas mixture components permeate membrane substance. The driving force behind the gas separation process is the difference in partial pressures on different membrane sides.
The gas–liquid separation section of the separator is determined by the maximum removal droplet size using the Souders–Brown equation with an appropriate K factor. The oil-water separation section is held for a retention time that is provided by laboratory test data, pilot plant operating procedure, or operating experience.