Search results
Results From The WOW.Com Content Network
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.
Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.
The convergence of a geometric series can be described depending on the value of a common ratio, see § Convergence of the series and its proof. Grandi's series is an example of a divergent series that can be expressed as 1 − 1 + 1 − 1 + ⋯ {\displaystyle 1-1+1-1+\cdots } , where the initial term is 1 {\displaystyle 1} and the common ratio ...
The theorem is still valid in a Banach algebra (see first line of the following proof). It is not sufficient for both series to be convergent; if both sequences are conditionally convergent, the Cauchy product does not have to converge towards the product of the two series, as the following example shows:
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.
2 Proof. 3 Example. 4 One-sided version. ... is a method of testing for the convergence of an infinite series. ... By Parseval's formula the area of the image of ...
In mathematics, the Stolz–Cesàro theorem is a criterion for proving the convergence of a sequence.It is named after mathematicians Otto Stolz and Ernesto Cesàro, who stated and proved it for the first time.
Abel's uniform convergence test is a criterion for the uniform convergence of a series of functions or an improper integration of functions dependent on parameters. It is related to Abel's test for the convergence of an ordinary series of real numbers, and the proof relies on the same technique of summation by parts. The test is as follows.