When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Solid of revolution - Wikipedia

    en.wikipedia.org/wiki/Solid_of_revolution

    Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...

  3. Disc integration - Wikipedia

    en.wikipedia.org/wiki/Disc_integration

    where R O (x) is the function that is farthest from the axis of rotation and R I (x) is the function that is closest to the axis of rotation. For example, the next figure shows the rotation along the x-axis of the red "leaf" enclosed between the square-root and quadratic curves: Rotation about x-axis. The volume of this solid is:

  4. Surface integral - Wikipedia

    en.wikipedia.org/wiki/Surface_integral

    where the expression between bars on the right-hand side is the magnitude of the cross product of the partial derivatives of r(s, t), and is known as the surface element (which would, for example, yield a smaller value near the poles of a sphere, where the lines of longitude converge more dramatically, and latitudinal coordinates are more ...

  5. Surface of revolution - Wikipedia

    en.wikipedia.org/wiki/Surface_of_revolution

    A portion of the curve x = 2 + cos(z) rotated around the z-axis A torus as a square revolved around an axis parallel to one of its diagonals.. A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). [1]

  6. Volume form - Wikipedia

    en.wikipedia.org/wiki/Volume_form

    In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold ...

  7. Volume integral - Wikipedia

    en.wikipedia.org/wiki/Volume_integral

    In mathematics (particularly multivariable calculus), a volume integral (∭) is an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities, or to calculate mass from a corresponding density ...

  8. Spherical shell - Wikipedia

    en.wikipedia.org/wiki/Spherical_shell

    An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}

  9. Steinmetz solid - Wikipedia

    en.wikipedia.org/wiki/Steinmetz_solid

    The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...