Ad
related to: discrete probability calculator excel spreadsheet india free
Search results
Results From The WOW.Com Content Network
The Dirac delta function, although not strictly a probability distribution, is a limiting form of many continuous probability functions. It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it ...
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
The geometric distribution models the probability of the first success in a sequence of Bernoulli trials and is characterized by a single parameter, p, which is the probability of success on an individual trial. In contrast, the discrete Weibull distribution can model a broader range of data patterns due to its two parameters.
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
In probability and statistics, the logarithmic distribution (also known as the logarithmic series distribution or the log-series distribution) is a discrete probability distribution derived from the Maclaurin series expansion = + + +.
In probability theory and statistics, the beta-binomial distribution is a family of discrete probability distributions on a finite support of non-negative integers arising when the probability of success in each of a fixed or known number of Bernoulli trials is either unknown or random.
Assume is discrete random variable taking values on the non-negative integers, which is independent of the , and consider the probability generating function . If the X i {\displaystyle X_{i}} are not only independent but also identically distributed with common probability generating function G X = G X i {\displaystyle G_{X}=G_{X_{i}}} , then
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.