Ad
related to: transverse mercator projection formula
Search results
Results From The WOW.Com Content Network
The projection is known by several names: the (ellipsoidal) transverse Mercator in the US; Gauss conformal or Gauss–Krüger in Europe; or Gauss–Krüger transverse Mercator more generally. Other than just a synonym for the ellipsoidal transverse Mercator map projection, the term Gauss–Krüger may be used in other slightly different ways:
The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid. However, it differs from ...
Forms the basis of the Universal Transverse Mercator coordinate system. 1922 Roussilhe oblique stereographic: Henri Roussilhe 1903 Hotine oblique Mercator Cylindrical Conformal M. Rosenmund, J. Laborde, Martin Hotine 1855 Gall stereographic: Cylindrical Compromise James Gall: Intended to resemble the Mercator while also displaying the poles.
The projection formulae use, ′, the second eccentrity (defined above) instead of . The grid reference schemes are defined in the article Universal Transverse Mercator coordinate system. The accuracy claimed for the UTM projections is 10 cm in grid coordinates and 0.001 arc seconds for geodetic coordinates.
A Mercator map can therefore never fully show the polar areas (but see Uses below for applications of the oblique and transverse Mercator projections). The Mercator projection is often compared to and confused with the central cylindrical projection , which is the result of projecting points from the sphere onto a tangent cylinder along ...
This transverse Mercator projection is mathematically the same as a standard Mercator, but oriented around a different axis. Once a choice is made between projecting onto a cylinder, cone, or plane, the aspect of the shape must be specified.
In cartography, a conformal map projection is one in which every angle between two curves that cross each other on Earth (a sphere or an ellipsoid) is preserved in the image of the projection; that is, the projection is a conformal map in the mathematical sense. For example, if two roads cross each other at a 39° angle, their images on a map ...
Rounded scale factor at longitude 2 degrees west is 0.999601271775, so on the Transverse Mercator projection 49 degrees North is 5427063.8153 meters from the Equator. So when converting lat-lon to British National Grid, use the formulas given above and subtract 5527063.815 meters from the calculated N.